Math, asked by pharilal686, 19 days ago

lim x tend ti zero 1 + x 1/x = e​

Answers

Answered by senboni123456
2

Answer:

Step-by-step explanation:

We have,

\displaystyle\tt{\lim_{x\to0}\,\left(1+x\right)^{\frac{1}{x}}}

\displaystyle\tt{=e^{\displaystyle\lim_{x\to0}\,\log\left\{\left(1+x\right)^{\frac{1}{x}}\right\}}}

\displaystyle\tt{=e^{\displaystyle\lim_{x\to0}\,\dfrac{1}{x}\cdot\log\left(1+x\right)}}

\displaystyle\tt{=e^{\displaystyle\lim_{x\to0}\,\dfrac{\log\left(1+x\right)}{x}}}

\displaystyle\tt{=e^{1}}

\tt{=e}

Similar questions