Math, asked by darshanag07, 2 months ago

lim x tend to 0 (1+x)^5-1/(1+x)^3-1​

Answers

Answered by mathdude500
2

\begin{gathered}\Large{\bold{{\underline{Formula \:  Used \::}}}}  \end{gathered}

 \large \boxed{\tt \:  ⟼ \: \lim_{x\to a}\dfrac{ {x}^{n} -  {a}^{n}  }{x - a}  = n {a}^{n - 1} }

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\blue{\bold{Solution :-  }}

\tt \:  ⟼ \: \lim_{x\to 0}\dfrac{ {(1 + x)}^{5}  - 1}{ {(1 + x)}^{3} - 1 }

\large\underline{\bold{❥︎Step :- 1 }}

☆ If we substitute x = 0, in the given statement, we get indeterminant form 0/0.

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline{\bold{❥︎Step :- 2 }}

\tt \:  ⟼ \: \lim_{x\to 0}\dfrac{ {(1 + x)}^{5}  - 1}{ {(1 + x)}^{3} - 1 }

\tt \:  put \: 1 + x = y  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\ \tt \: as \: x⟼0 \: then \: y⟼1

\tt \:   = \lim_{y\to 1}\dfrac{ {y}^{5} - 1 }{ {y}^{3} - 1 }

☆ On dividing the numerator and denominator by y - 1, we get

\tt \:   = \lim_{y\to 1}\dfrac{\dfrac{ {y}^{5}  - 1}{y - 1} }{\dfrac{ {y}^{3}  - 1}{y - 1} }

\tt \:   = \dfrac{5 \times  {(1)}^{5 - 1} }{3 \times  {(1)}^{2 - 1} }

\tt \:   = \dfrac{5}{3}

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions