Math, asked by kharish2403, 7 months ago

Lim x tend to 0. e^x-1/10x​

Answers

Answered by mantu9000
3

We have:

\lim_{x \to 0} \dfrac{e^{x}-1}{10x}

We have to find the value of \lim_{x \to 0} \dfrac{e^{x}-1}{10x}.

Solution:

\lim_{x \to 0} \dfrac{e^{x}-1}{10x}

= \dfrac{1}{10} \lim_{x \to 0} \dfrac{e^{x}-1}{x}

= \dfrac{1}{10} \times 1 [ ∵ \lim_{x \to 0} \dfrac{e^{x}-1}{x}=1]

= \dfrac{1}{10}

\lim_{x \to 0} \dfrac{e^{x}-1}{10x} = \dfrac{1}{10}

Thus, the value of \lim_{x \to 0} \dfrac{e^{x}-1}{10x} is \dfrac{1}{10}.

Similar questions