Math, asked by rajeshgenius9817, 9 hours ago

lim x tend to pi/2 cosx/log(x-pi/2+1)​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{x \to  \dfrac{\pi}{2} } \:  \frac{cosx}{log\bigg[x - \dfrac{\pi}{2}  + 1\bigg]}

On substituting directly the value of x, we get

\rm \:  =  \:  \:  \dfrac{cos\dfrac{\pi}{2} }{log\bigg[\dfrac{\pi}{2}  - \dfrac{\pi}{2}  + 1\bigg]}

\rm \:  =  \: \dfrac{0}{log1}

\rm \:  =  \: \dfrac{0}{0}

which is indeterminant form.

Consider, again

\rm :\longmapsto\:\displaystyle\lim_{x \to  \dfrac{\pi}{2} } \:  \frac{cosx}{log\bigg[x - \dfrac{\pi}{2}  + 1\bigg]}

To evaluate this limit, we use Method of Substitution.

So, Substitute

 \purple{\rm :\longmapsto\:x = \dfrac{\pi}{2} + y}

 \purple{\rm :\longmapsto\:as \: x \:  \to \:  \dfrac{\pi}{2}, \:  \: so \: y \:  \to \: 0}

So, above expression can be rewritten as

\rm \:  =  \: \displaystyle\lim_{y \to  0 } \:  \frac{cos\bigg[\dfrac{\pi}{2}  + y\bigg]}{log\bigg[ \dfrac{\pi}{2} + y  - \dfrac{\pi}{2}  + 1\bigg]}

\rm \:  =  \: \displaystyle\lim_{y \to 0} \frac{ -  \: siny}{log(1 + y)}

\rm \:  =  \:  -  \: \displaystyle\lim_{y \to 0} \frac{\: siny}{log(1 + y)}

\rm \:  =  \:  -  \: \displaystyle\lim_{y \to 0} \:  \frac{siny}{y} \:  \times  \: \displaystyle\lim_{y \to 0} \frac{y}{log(1 + y)}

\rm \:  =  \:  - 1 \times 1

\rm \:  =  \:  - 1

Hence,

\rm :\longmapsto\:\boxed{\tt{  \: \displaystyle\lim_{x \to  \dfrac{\pi}{2} } \:  \frac{cosx}{log\bigg[x - \dfrac{\pi}{2}  + 1\bigg]}  =  - 1}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Formula Used

 \purple{\rm :\longmapsto\:\boxed{ \:  \: \tt{ \displaystyle\lim_{x\to 0} \frac{sinx}{x} = 1 \:  \: }}}

 \purple{\rm :\longmapsto\:\boxed{\tt{  \:  \: \displaystyle\lim_{x\to 0} \frac{log(1 + x)}{x} = 1 \:  \: }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know

 \purple{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x\to 0} \frac{ {e}^{x}  - 1}{x} = 1}}}

 \purple{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x\to 0} \frac{ {a}^{x}  - 1}{x} = loga}}}

 \purple{\rm :\longmapsto\:\boxed{\tt{  \:  \: \displaystyle\lim_{x\to 0} \frac{tanx}{x} = 1 \:  \: }}}

Similar questions