Math, asked by EmeraldBoy, 9 days ago

lim x tending to 1 (√x-1)(2x-3)/(2x²+x-3)

i hope u all will help me :)

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{x \to 1}\rm  \frac{( \sqrt{x} - 1) (2x - 3)}{ {2x}^{2} + x - 3 }

can be further rewritten as

\rm \:  =  \: \displaystyle\lim_{x \to 1}\rm (2x - 3) \times \displaystyle\lim_{x \to 1}\rm  \frac{ \sqrt{x}  - 1}{ {2x}^{2}  + x - 3}

\rm \:  =  \:  (2(1) - 3) \times \displaystyle\lim_{x \to 1}\rm  \frac{ \sqrt{x}  - 1}{ {2x}^{2}  + 3x - 2x - 3}

\rm \:  =  \:  (2 - 3) \times \displaystyle\lim_{x \to 1}\rm  \frac{ \sqrt{x}  - 1}{ x(2x + 3) - 1(2x + 3)}

\rm \:  =  \:   (-  1) \displaystyle\lim_{x \to 1}\rm  \frac{ \sqrt{x}  - 1}{ (2x + 3) (x  - 1)}

\rm \:  =  \:  - \displaystyle\lim_{x \to 1}\rm  \frac{1}{2x + 3} \times \displaystyle\lim_{x \to 1}\rm  \frac{ \sqrt{x}  - 1}{ {( \sqrt{x} )}^{2}  -  {1}^{2} }

\rm \:  =  \:  - \dfrac{1}{2 + 3} \times \displaystyle\lim_{x \to 1}\rm  \frac{ \sqrt{x}  - 1}{( \sqrt{x} - 1)( \sqrt{x}  + 1) }

\rm \:  =  \:  - \dfrac{1}{5} \times \displaystyle\lim_{x \to 1}\rm  \frac{ 1}{\sqrt{x}  + 1}

\rm \:  =  \:  - \dfrac{1}{5} \times   \dfrac{ 1}{\sqrt{1}  + 1}

\rm \:  =  \:  - \dfrac{1}{5} \times   \dfrac{ 1}{1  + 1}

\rm \:  =  \:  - \dfrac{1}{5} \times   \dfrac{ 1}{2}

\rm \:  =  \:  - \dfrac{1}{10}

Hence,

\rm\implies \:\boxed{\tt{ \displaystyle\lim_{x \to 1}\rm  \frac{( \sqrt{x} - 1) (2x - 3)}{ {2x}^{2} + x - 3 }  =  -  \frac{1}{10} \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

LEARN MORE

\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{sinx}{x} = 1 \: }} \\

\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{tanx}{x} = 1 \: }} \\

\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{log(1 + x)}{x} = 1 \: }} \\

\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{ {e}^{x}  - 1}{x} = 1 \: }} \\

\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{ {a}^{x}  - 1}{x} = loga\: }} \\

Answered by MysticSohamS
2

Answer:

your solution is in above pic

pls mark it as brainliest

Attachments:
Similar questions