History, asked by NeneAmaano4136, 11 months ago

Lim x tends 3 (x-3)/(√x-√3)=

Answers

Answered by Anonymous
55

{\red{\huge{\underline{\mathbb{Question:-}}}}}

lim x tends to 3

 \frac{x - 3}{ \sqrt{x}  -  \sqrt{3} }

{\green {\huge{\underline{\mathbb{Answer:-}}}}}

lim X tends to 3

 \frac{x - 3}{ \sqrt{x}  -  \sqrt{3} }

________________

rationalise the term

lim x tends to 3

 \frac{x - 3}{ \sqrt{x} -  \sqrt{3}  }  \times  \frac{ \sqrt{x}   +  \sqrt{3} }{ \sqrt{x} +  \sqrt{3}  }

lim x tends to 3

 \frac{(x - 3) (\sqrt{x}  + \sqrt{3} )}{( x - 3) }

lim x tends to 3

 \sqrt{x}  +  \sqrt{3}

put x = 3

then u get 2√3

which is the required answer

I hope it helps you!

Answered by Anonymous
1

Answer:

{\red{\huge{\underline{\mathbb{Question:-}}}}}

Question:−

lim x tends to 3

\frac{x - 3}{ \sqrt{x} - \sqrt{3} }

x

3

x−3

{\green {\huge{\underline{\mathbb{Answer:-}}}}}

Answer:−

lim X tends to 3

\frac{x - 3}{ \sqrt{x} - \sqrt{3} }

x

3

x−3

________________

rationalise the term

lim x tends to 3

\frac{x - 3}{ \sqrt{x} - \sqrt{3} } \times \frac{ \sqrt{x} + \sqrt{3} }{ \sqrt{x} + \sqrt{3} }

x

3

x−3

×

x

+

3

x

+

3

lim x tends to 3

\frac{(x - 3) (\sqrt{x} + \sqrt{3} )}{( x - 3) }

(x−3)

(x−3)(

x

+

3

)

lim x tends to 3

\sqrt{x} + \sqrt{3}

x

+

3

put x = 3

then u get 2√3

which is the required answer

I hope it helps you!

Explanation:

please help me by Mark Me as Brainliest ❤️

Similar questions