Math, asked by smetkari9668, 1 year ago

lim x tends to 0 (1-cos cube x)/xsin2x

Answers

Answered by vishalkumar2806
0

Limit x tends to zero sinx by x = 1

Attachments:
Answered by Anonymous
4

Answer:

3/4

Step-by-step explanation:

\displaystyle\frac{1-\cos^3x}{x\sin2x}=\frac{(1-\cos x)(1+\cos x+\cos^2x)}{x\sin2x}\\\\{}\qquad=\frac{(1-\cos^2x)(1+\cos x+\cos^2x)}{x\sin2x(1+\cos x)}\\\\{}\qquad=\frac{\sin^2x(1+\cos x+\cos^2x)}{x\sin2x(1+\cos x)}\\\\{}\qquad=\frac{\sin x}{x}\cdot\frac{\sin x}{x}\cdot\frac{2x}{\sin2x}\cdot\frac{1+\cos x+\cos^2x}{2(1+\cos x)}

So...

\displaystyle\lim_{x\rightarrow0}\frac{1-\cos^3x}{x\sin2x}\\\\=\left(\lim_{x\rightarrow0}\frac{\sin x}{x}\right)\left(\lim_{x\rightarrow0}\frac{\sin x}{x}\right)\left(\lim_{x\rightarrow0}\frac{2x}{\sin2x}\right)\left(\lim_{x\rightarrow0}\frac{1+\cos x+\cos^2x}{2(1+\cos x)}\right)\\\\=1\times1\times1\times\frac34\\\\=\frac34

Similar questions