Math, asked by faiz29, 1 year ago

lim x tends to 0: 1-cos2mx÷ 1- cos2nx

Answers

Answered by souravsarkar045
14
here is your answer. thank you
Attachments:
Answered by Anonymous
5

The solution of the given limit is

      \lim_{x \to 0\1} \frac{1-cos2mx}{1-cos2nx} = \frac{m^{2} }{n^{2} }

  • here  We have,  

               \lim_{x \to 0\1} \frac{1-cos2mx}{1-cos2nx}    

  • Now, by using double angle formula for cosx that is

            cos2x = 1-2sin^{2}x\\ 1 - cos2x = 2sin^{2} x

   

           we get,  

                    \lim_{x \to 0\1} \frac{2sin^{2}mx }{2sin^{2}nx }             

  •  dividing both numerator and denominator by 'x^{2}' and multiplying and dividing both numerator and denominator by m^{2} and n^{2} respectively, we get

                 =\lim_{x \to 0\1}  \frac  {\frac{m^{2} sin^{2} mx}^{m^{2} } {x^{2} } } { {\frac{n^{2} sin^{2} nx}^{n^{2} } {x^{2} } } }

                 =\frac{m^{2} }{n^{2} } \frac{ \lim_{x \to 0\1} (\frac{sinmx}{mx} )^{2}  } {  \lim_{x \to 0\1}(\frac{sinnx}{nx} )^{2}  }

  • Now, by using standard sine limit that is

               \lim_{x \to 0\1} \frac{sinx}{x} = 1    , we get

                \frac{m^{2} }{n^{2} } \frac{ \lim_{x \to 0\1} (\frac{sinmx}{mx} )^{2}  }{ \lim_{x \to 0\1} (\frac{sinnx}{nx} )^{2}} = \frac{m^{2} }{n^{2} } (\frac{1}{1} )

       

Therefore the required solution of the given limit is ,

        \lim_{x \to 0\1} \frac{1-cos2mx}{1-cos2nx} = \frac{m^{2} }{n^{2} }

Similar questions