Math, asked by PiyushBehal3584, 1 day ago

Lim x tends to 0 1-cos2x/3x^2

Answers

Answered by chandan454380
0

Answer:

The answer is \frac{2}{3}

Step-by-step explanation:

   \displaystyle \lim_{x\to 0}\frac{1-\cos 2x}{3x^2}

  =\displaystyle \lim_{x\to 0}\frac{2\sin^2x}{3x^2}, since 1-\cos 2\theta=2\sin^2\theta

 =\frac{2}{3}\displaystyle \lim_{x\to 0}(\frac{\sin x}{x})^2\\

=\frac{2}{3}(1)^2=\frac{2}{3}, since \displaystyle \lim_{x\to 0}\frac{\sin x}{x}=1

Similar questions