Math, asked by suvajitdas1234567809, 5 months ago

lim x tends to 0 (1 -tanx)/(x-pi /4)​

Answers

Answered by Anonymous
23

Explanation:

 \circ \:  \tt \: lim_{x \rightarrow0} \: ( \dfrac{1 - tan(x)}{x -  \dfrac{ \pi}{4} } )\green \bigstar

  \displaystyle \: \longrightarrow \:  \tt  \: ( \dfrac{1 - tan(0)}{0 -  \dfrac{ \pi}{4} } )

 \displaystyle \: \longrightarrow \:  \tt  \: ( \dfrac{1 - 0}{0 -  \dfrac{ \pi}{4} })

\displaystyle \: \longrightarrow \:  \tt  \: ( \dfrac{1 }{-  \dfrac{ \pi}{4} })

\displaystyle \: \longrightarrow \:  \tt  \:   - \dfrac{4}{ \pi}  \:  \red \bigstar

[ Note: Refer to the attachment for some important limits formula's.]

__________________

Know to more:

\begin{gathered}\boxed{\boxed{\begin{minipage}{4cm}\displaystyle\circ\sf\:\int{1\:dx}=x+c\\\\\circ\sf\:\int{a\:dx}=ax+c\\\\\circ\sf\:\int{x^n\:dx}=\dfrac{x^{n+1}}{n+1}+c\\\\\circ\sf\:\int{sin\:x\:dx}=-cos\:x+c\\\\\circ\sf\:\int{cos\:x\:dx}=sin\:x+c\\\\\circ\sf\:\int{sec^2x\:dx}=tan\:x+c\\\\\circ\sf\:\int{e^x\:dx}=e^x+c\end{minipage}}}\end{gathered}

Attachments:
Answered by Anonymous
4

Solution :-

\implies\sf{lim_{x\to0}( \dfrac{1 - tan(x)}{x -  \dfrac{\pi}{4} }) }\\\\

\implies\sf{( \dfrac{1 - tan(0)}{0 -  \dfrac{\pi}{4} }) }\\\\

\implies\sf( \dfrac{1 - 0}{0 - \dfrac{\pi}{4}} )\\\\

\implies\sf( \dfrac{1}{ - \dfrac{\pi}{4}} )\\\\

\implies{\boxed{\red{\bf{ -  \dfrac{ 4}{\pi} }}}}

Similar questions