Math, asked by xyz968, 3 months ago

lim x tends to 0( (1+x)^5 -1) /(3x+5x^2)​

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

 \lim _{x \rarr0}  \frac{ {(1 + x)}^{5}  - 1}{3x + 5 {x}^{2} }  \\

This is the form of 0/0, so,

using l'hospital rule,

 \lim _{x \rarr0} \frac{ \frac{d}{dx}((1 + x)^{5} - 1)  }{ \frac{d}{dx}(3x + 5 {x}^{2}  )}  \\

 =  \lim _{x \rarr0} \frac{5(1 + x) ^{4} }{3  + 10x}  \\

 =  \frac{5(1 + 0) ^{4} }{3 + 10(0)}  \\

 =  \frac{5 \times 1}{3 + 0}  \\

 =  \frac{5}{3}  \\

Answered by Asterinn
6

 \rm \longrightarrow \: \displaystyle \lim_ {x  \to \: 0}  \rm{ \dfrac{ {(1 + x)}^{5} - 1 }{3x + 5 {x}^{2} } } \\

If we put x=0 in the above expression we get 0/0 form. Since 0/0 is indeterminate form , So we will apply L'Hospital rule to solve this.

While applying L'Hospital rule , we have to differentiate numerator and denominator seperately.

\rm \longrightarrow \: \displaystyle \lim_ {x  \to \: 0}  \rm{  \dfrac{d \bigg(\dfrac{ {(1 + x)}^{5} - 1}{dx}  \bigg)}{ \dfrac{d(3x + 5 {x}^{2})}{dx}  } } \\

\rm \longrightarrow \: \displaystyle \lim_ {x  \to \: 0}  \rm{ \dfrac{ {5(1 + x)}^{4} - 0 }{3+ 5 {x}^{} } } \\

\rm \longrightarrow \: \displaystyle \lim_ {x  \to \: 0}  \rm{ \dfrac{ {5(1 + x)}^{4} }{3+ 5 {x}^{} } } \\

Now put x= 0.

\rm \longrightarrow \: \displaystyle  \rm{ \dfrac{ {5(1 + 0)}^{4}  }{3+ (5 \times 0)} } \\

\rm \longrightarrow \: \displaystyle  \rm{ \dfrac{ {5(1)}^{4}  }{3+ 0} } \\

\rm \longrightarrow \: \displaystyle  \rm{ \dfrac{ {5}  }{3} } \\

Answer : 5/3


Anonymous: Wow..! Osm ❤
Similar questions