Math, asked by devyadav11, 1 year ago

lim x tends to 0 2sinx- sin 2x ÷ x^3


^

Answers

Answered by VedantiVJ
86
I hope this helps you.
Attachments:
Answered by harendrachoubay
30

The value of \lim_{x \to 0} \dfrac{2\sin x-\sin 2x}{x^{3} }is 1.

Step-by-step explanation:

We have,

\lim_{x \to 0} \dfrac{2\sin x-\sin 2x}{x^{3} }

To find, the value of \lim_{x \to 0} \dfrac{2\sin x-\sin 2x}{x^{3}}= ?

=\lim_{x \to 0} \dfrac{2\sin x-2\sin x\cos x}{x^{3} } [\dfrac{0}{0} form]

[ ∵ \sin 2A=2\sin A\cos A]

=\lim_{x \to 0} \dfrac{2\sin x(1-\cos x)}{x^{3} }

=2\lim_{x \to 0} \dfrac{\sin x}{x} \dfrac{(1-\cos x)}{x^{2} }

=2\lim_{x \to 0} 1. \dfrac{(2\sin ^{2}\frac{x}{2} )}{x^{2} }

=4\lim_{x \to 0} 1. \dfrac{(\sin ^{2}\frac{x}{2} )}{(\dfrac{x}{2} )^{2} }\times \frac{1}{4}

= 4 × \dfrac{1}{4}

= 1

Hence, the value of \lim_{x \to 0} \dfrac{2\sin x-\sin 2x}{x^{3} }is 1.

Similar questions