Math, asked by shanulhaque, 1 year ago

lim x tends to 0 3sinx-4sin^3/x

Attachments:

Answers

Answered by jayantjay
11
it's the formula for sin 3theta/x
I mean sin3x/x
and we know that sinx/x=1
so ans is 3
Answered by harendrachoubay
5

\lim_{x \to 0} \dfrac{3\sin x-4\sin^3 x}{x}=3

Step-by-step explanation:

We have,

\lim_{x \to 0} \dfrac{3\sin x-4\sin^3 x}{x}

To find, \lim_{x \to 0} \dfrac{3\sin x-4\sin^3 x}{x}=?

\lim_{x \to 0} \dfrac{3\sin x-4\sin^3 x}{x} ......(1)

(\dfrac{0}{0} form)

We know that,

\sin 3A=3\sin A-4\sin^3 A

Equation (1) can be written as,

\lim_{x \to 0} \dfrac{\sin 3x}{x}

Multiplying numerator and denominator by 3, we get

=\lim_{x \to 0} \dfrac{3\sin 3x}{3x}

=3\lim_{x \to 0} \dfrac{\sin 3x}{3x}

= 3 × 1

Using limit formula,

\lim_{x \to 0} \dfrac{\sin x}{x}=1

= 3

\lim_{x \to 0} \dfrac{3\sin x-4\sin^3 x}{x}=3

Hence, \lim_{x \to 0} \dfrac{3\sin x-4\sin^3 x}{x}=3

Similar questions