Math, asked by Narenthar, 1 year ago

lim x tends to 0((a^x-1) /((√1+x)-1)

Answers

Answered by BEJOICE
1

\lim_{x \to 0}  \frac{ {a}^{x}  - 1}{ \sqrt{1 + x}  - 1}  \\  = \lim_{x \to 0}  \frac{ ({a}^{x}  - 1)( \sqrt{1 + x}   +  1)}{ (\sqrt{1 + x}  - 1)( \sqrt{1 + x}   +  1)}  \\  =  \lim_{x \to 0}  \frac{ ({a}^{x}  - 1)( \sqrt{1 + x}   +  1)}{ ((1 + x)  - 1)} \\  =   \lim_{x \to 0}  \frac{ ({a}^{x}  - 1)( \sqrt{1 + x}   +  1)}{  x} \\  =  \lim_{x \to 0}  \frac{ ({a}^{x}  - 1)}{  x} \times  \lim_{x \to 0} ( \sqrt{1 + x}   +  1) \\  =  ln(a)  \times ( \sqrt{1 + 0}  + 1) \\  =  2   \: ln(a)   = ln( {a}^{2} )
Similar questions