Math, asked by BhavanaM, 1 year ago

Lim x tends to 0 {cos(ax)- cos(bx)}/x^2

Answers

Answered by birendrak1975
24
I hope this helps you with the question. Any queries please comment below
Attachments:

BhavanaM: Tq very much..
BhavanaM: It is very clear too....
Answered by guptasingh4564
7

So, The answer is \frac{b^{2} -a^{2} }{2}

Step-by-step explanation:

Given,

\lim_{x \to 0} \frac{cos(ax)-cos(bx)}{x^{2} } =?

\frac{cos(ax)-cos(bx)}{x^{2} } =\frac{2sin\frac{(ax+bx)}{2}sin\frac{(bx-ax)}{2}  }{x^{2} }

                        =2\frac{sin.x\frac{a+b}{2} }{x.\frac{a+b}{2} } \frac{a+b}{2}\times \frac{sin.x\frac{b-a}{2} }{x.\frac{b-a}{2} } \frac{b-a}{2}

\lim_{x \to 0} \frac{cos(ax)-cos(bx)}{x^{2} } =2 \lim_{x \to 0} \frac{sin.x\frac{a+b}{2} }{x.\frac{a+b}{2} } \frac{a+b}{2}\times  \lim_{x \to 0}  \frac{sin.x\frac{b-a}{2} }{x.\frac{b-a}{2} } \frac{b-a}{2}

                                    =2\times \frac{a+b}{2}\times \frac{b-a}{2}  (∵ \lim_{x \to 0} \frac{sinx}{x} =1 )

                                    =\frac{b^{2} -a^{2} }{2} (∵ (a+b)(a-b)=a^{2} -b^{2} )

∴ The answer is \frac{b^{2} -a^{2} }{2}

Similar questions