Math, asked by rohit1895, 1 year ago

lim x tends to 0 (e^2x -1)/x​

Answers

Answered by rishu6845
2

Step-by-step explanation:

plzz give me brainliest ans and plzzzz follow me

Attachments:
Answered by swethassynergy
1

The value of \lim_{x \to \ 0} \frac{e^{2x}-1 }{x} is 2.

Step-by-step explanation:

Given:

\lim_{x \to \ 0} \frac{e^{2x}-1 }{x}

To Find:

The value of \lim_{x \to \ 0} \frac{e^{2x}-1 }{x} .

Solution:

As given, \lim_{x \to \ 0} \frac{e^{2x}-1 }{x}.

\lim_{x \to \ 0} \frac{e^{2x}-1 }{x}

=\frac{e^{2\times0}-1 }{0} =\frac{1-1}{0} =\frac{0}{0}

The limit of numerator and denominator is form of \frac{0}{0}.

Therefore, applying the  L' Hospital's Rule.

\lim_{x \to \ 0} \frac{e^{2x}-1 }{x}=\lim_{x \to \ 0} \frac{\frac{d}{dx} (e^{2x}-1) }{\frac{x}{dx} (x)}

                     =\lim_{x \to \ 0} \frac{(2e^{2x}-0 )}{1}

                     =\lim_{x \to \ 0} 2e^{2x}

                      =2\lim_{x \to \ 0} e^{2x}

                      =2 e^{2\times0}

                      =2 e^{0}\\=2\times1=2

Thus,the value of \lim_{x \to \ 0} \frac{e^{2x}-1 }{x} is 2.

                     

#SPJ2

               

Similar questions