Math, asked by alka152484, 3 months ago

lim x tends to 0 e^ax - e^-ax/log(1+bx)

Answers

Answered by donbhai4241
6

Step-by-step explanation:

this can be right answer of your question.

Attachments:
Answered by Syamkumarr
3

Answer:

\lim_{x \to 0} \frac{e^{ax} -e^{-ax} }{log(1+bx)} = \frac{2a }{b}

Step-by-step explanation:

Given \lim_{x \to 0} \frac{e^{ax} -e^{-ax} }{log(1+bx)}

If we apply the limit, we get

= \frac{e^{a*0} -e^{-a*0} }{log(1+b*0)}

= \frac{1 -1 }{log1}

= \frac{0}{0}

As this is indeterminate form, we apply L Hospital's Rule

that is differentiating the numerator and denominator

=> \lim_{x \to 0} \frac{e^{ax}*a -e^{-ax}*(-a) }{\frac{1}{ (1+bx)} *b}                      (  \frac{d}{dx} e^{ax} =  e^{ax} and \frac{d}{dx} log x = \frac{1}{x} )

= \lim_{x \to 0} \frac{a(e^{ax} +e^{-ax})(1+bx) }{b}

Now applying the limits,

= \frac{a(e^{0} +e^{0})(1+b*0) }{b}

= \frac{a(1+1)(1+0) }{b}

= \frac{a(2)(1) }{b}

= \frac{2a }{b}

Therefore, \lim_{x \to 0} \frac{e^{ax} -e^{-ax} }{log(1+bx)} = \frac{2a }{b}

Similar questions