Math, asked by samaira91, 1 year ago

lim x tends to 0 root 2 - under root 1+ cosx upon sin square x solve pls​

Answers

Answered by pulakmath007
4

SOLUTION

TO EVALUATE

\displaystyle  \sf{\lim_{x \to 0} \:  \frac{ \sqrt{2}  -  \sqrt{1 + cos x} }{ { \sin}^{2}x }}

EVALUATION

SOLVE USING L'HOSPITAL RULE

\displaystyle  \sf{\lim_{x \to 0} \:  \frac{ \sqrt{2}  -  \sqrt{1 + cos x} }{ { \sin}^{2}x }} \:  \: \:  \:  \:   \:  \:  \bigg( \:  \frac{0}{0}  \:  \: form \bigg)

\displaystyle  \sf{ = \lim_{x \to 0} \:  \frac{  \frac{  \sin x}{2 \sqrt{1 + cos x}}  }{ 2\sin x  \cos x}} \:

\displaystyle  \sf{ = \lim_{x \to 0} \:  \frac{   \sin x }{ 4\sin x  \cos x \:\sqrt{1 + cos x} }} \:

\displaystyle  \sf{ = \lim_{x \to 0} \:  \frac{ 1 }{ 4 \cos x \:\sqrt{1 + cos x} }} \:

\displaystyle  \sf{ =\:  \frac{ 1 }{ 4 \cos 0 \:\sqrt{1 + cos 0} }} \:

\displaystyle  \sf{ = \:  \frac{ 1 }{ 4  \times 1 \times  \:\sqrt{1 + 1} }} \:

\displaystyle  \sf{ = \:  \frac{ 1 }{ 4  \sqrt{2} }} \:

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. the value of limited x to 0 sin7x+sin5x÷tan5x-tan2x is

https://brainly.in/question/28582236

2. Lim x→0 (log 1+8x)/x

https://brainly.in/question/18998465

Similar questions