Math, asked by adityaraj3126, 2 months ago

lim x tends to 0 (sin(2x)/coa3x))

Answers

Answered by sidb15
0

 \huge \bold { \mathfrak{Answer }}  \color{green}\mathcal{ \:  = 0}

lim _{x \rightarrow \: 0}  \frac{ \sin(2x) }{ \cos(3x) }

  \small\because \: lim _{x \rightarrow0}\sin(2x)  =  \sin(2 \times 0)  = 0 \\   \:  and \: lim _{x \rightarrow0} \cos(3x)  =  \cos(0)  = 1

lim _{x \rightarrow0} \frac{ \sin(2x) }{ \cos(3x) }  =  \frac{0}{1}  =  \huge \bold \color{green}0

Hope it helps

Similar questions