lim x tends to 0 sin2x(1-cos2x)/x^3
Answers
Answered by
26
hello users ........
solution:-
we know that :
Lim x⇒0 [ (sin x ) / x ] = 1
and
Lim x ⇒0 [ (sin²x) / x² ] = 1
and
( 1 - cos 2x ) = 2 sin² x
Here,
lim x⇒0 [sin2x(1-cos2x)/x³ ]
= Lim x⇒0 [(sin 2x) / x × 2 (sin² x) / x² ]
= Lim x⇒0 [(sin 2x) / x] × 2 Lim x⇒0 [ (sin² x) / x² ]
= Lim x⇒0 [ 2 (sin 2x) / 2 x] × 2 Lim x⇒0 [ (sin² x) / x² ]
= 2 Lim x⇒0 [(sin 2x) / 2x] × 2 Lim x⇒0 [ (sin² x) / x² ]
= 2×1 × 2 ×1= 4
=> lim x⇒0 [sin2x(1-cos2x)/x³ ] = 4 answer
✪✪ hope it helps ✪✪
solution:-
we know that :
Lim x⇒0 [ (sin x ) / x ] = 1
and
Lim x ⇒0 [ (sin²x) / x² ] = 1
and
( 1 - cos 2x ) = 2 sin² x
Here,
lim x⇒0 [sin2x(1-cos2x)/x³ ]
= Lim x⇒0 [(sin 2x) / x × 2 (sin² x) / x² ]
= Lim x⇒0 [(sin 2x) / x] × 2 Lim x⇒0 [ (sin² x) / x² ]
= Lim x⇒0 [ 2 (sin 2x) / 2 x] × 2 Lim x⇒0 [ (sin² x) / x² ]
= 2 Lim x⇒0 [(sin 2x) / 2x] × 2 Lim x⇒0 [ (sin² x) / x² ]
= 2×1 × 2 ×1= 4
=> lim x⇒0 [sin2x(1-cos2x)/x³ ] = 4 answer
✪✪ hope it helps ✪✪
Answered by
3
Answer:
10 thanxxx = 10 thanxx + follow ..............
15 thanxx = 20 thanxx + follow ..
Attachments:
Similar questions