Math, asked by kasarlarajiv5089, 1 year ago

Lim x tends to 0 Sin5x-sin3x/sinx

Answers

Answered by erinna
10

The value of given limit problem is 2.

Step-by-step explanation:

The given limit problem is

Lim_{x\rightarrow 0}(\dfrac{\sin 5x-\sin 3x}{\sin x})

It can be rewritten as

Lim_{x\rightarrow 0}(\dfrac{\sin 5x}{\sin x}-\dfrac{\sin 3x}{\sin x})

Lim_{x\rightarrow 0}(\dfrac{\sin 5x}{\sin x}\times \dfrac{5x}{5x}-\dfrac{\sin 3x}{\sin x}\times \dfrac{3x}{3x})

Lim_{x\rightarrow 0}(\dfrac{\sin 5x}{5x}\times \dfrac{5x}{\sin x}-\dfrac{\sin 3x}{3x}\times \dfrac{3x}{\sin x})

Distribute limits.

Lim_{x\rightarrow 0}\dfrac{\sin 5x}{5x}\times 5Lim_{x\rightarrow 0}\dfrac{x}{\sin x}-Lim_{x\rightarrow 0}\dfrac{\sin 3x}{3x}\times 3Lim_{x\rightarrow 0}\dfrac{x}{\sin x}

We know that Lim_{x\rightarrow 0}\dfrac{\sin ax}{ax}=Lim_{x\rightarrow 0}\dfrac{ax}{\sin ax}=1

After applying limits we get

1\times 5(1)-1\times 3(1)

5-3

2

Therefore, the value of given limit problem is 2.

#Learn more

Evaluate lim x-> 0 sin5x/sin3x

https://brainly.in/question/9192794

Similar questions