Math, asked by robinfalcon17, 5 months ago

lim x tends to 0 (sqrt(a^2+x^2))-(sqrt(a^2-x^2))/x^2​

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

 \lim _{x \rarr0 } \frac{ \sqrt{ {a}^{2} +  {x}^{2}  } -  \sqrt{ {a}^{2}  -  {x}^{2} }  }{ {x}^{2} }  \\

 =  \lim_{x \rarr0} \frac{( \sqrt{ {a}^{2}  +  {x}^{2} } -  \sqrt{ {a}^{2} -  {x}^{2}  } )( \sqrt{ {a}^{2}  +  {x}^{2} }   + \sqrt{ {a}^{2} -  {x}^{2}  })   }{ {x ^{2} ( \sqrt{ {a}^{2}  +  {x}^{2} } +  \sqrt{ {a}^{2} -  {x}^{2}  })  } }  \\

 =  \lim_{x  \rarr0} \frac{ {a}^{2} +  {x}^{2} -  {a}^{2}    +  {x}^{2} }{ {x}^{2} ( \sqrt{ {a}^{2} +  {x}^{2}  } +  \sqrt{ {a}^{2} -  {x}^{2}  })  }  \\

 =  \lim_{x \rarr0} \frac{2 {x}^{2} }{ {x}^{2} ( \sqrt{ {a}^{2} +  {x}^{2}  }  +  \sqrt{ {a}^{2}  -  {x}^{2} })}  \\

 = \lim_{x \rarr0} \frac{2}{ \sqrt{ {a}^{2}  +  {x}^{2} } + \sqrt{  {a}^{2} -  {x}^{2} }  }

 =  \frac{2}{a + a}

 =  \frac{1}{a}

Similar questions