Math, asked by sss1140, 2 months ago


lim x tends to 0
 \frac{ \sin( {x}^{0} ) }{x}

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:\displaystyle \lim_{x \to 0}  \rm \: \: \dfrac{sinx \degree}{x}

We know,

\rm :\longmapsto\:1 \degree \:  = \dfrac{\pi}{180}

So,

\rm :\longmapsto\:x \degree \:  = \dfrac{\pi \: x}{180}

Thus,

Given limit can be rewritten as

\rm \:  =  \:  \: \displaystyle \lim_{x \to 0}  \rm \:\dfrac{sin\dfrac{\pi \: x}{180} }{x}

\rm \:  =  \:  \: \displaystyle \lim_{x \to 0}  \rm \:\dfrac{sin\dfrac{\pi \: x}{180} }{\dfrac{\pi \: x}{180}}  \times \dfrac{\pi \: }{180}

\rm \:  =  \:  \: \dfrac{\pi \: }{180} \:  \times  \: \displaystyle \lim_{x \to 0}  \rm \:\dfrac{sin\dfrac{\pi \: x}{180} }{\dfrac{\pi \: x}{180}}

\rm \:  =  \:  \: \dfrac{\pi \: }{180} \:  \times  \:1

\red{\bigg \{ \because \: \displaystyle \lim_{x \to 0}  \rm \:\dfrac{sinx}{x} = 1 \bigg \}}

\rm \:  =  \:  \: \dfrac{ \: \pi \: }{180}

Hence,

\bf :\longmapsto\:\displaystyle \lim_{x \to 0}  \rm \: \: \dfrac{sinx \degree}{x}  =  \: \dfrac{ \:  \: \pi  \: \:}{180}

Additional Information :-

\rm :\longmapsto\:\displaystyle \lim_{x \to 0}  \rm \: \: \dfrac{sinx}{x}  = 1

\rm :\longmapsto\:\displaystyle \lim_{x \to 0}  \rm \: \: \dfrac{tanx}{x}  = 1

\rm :\longmapsto\:\displaystyle \lim_{x \to 0}  \rm \: \: \dfrac{tan^{ - 1} x}{x}  = 1

\rm :\longmapsto\:\displaystyle \lim_{x \to 0}  \rm \: \: \dfrac{sin^{ - 1} x}{x}  = 1

\rm :\longmapsto\:\displaystyle \lim_{x \to 0}  \rm \: \: \dfrac{log(1 + x)}{x}  = 1

\rm :\longmapsto\:\displaystyle \lim_{x \to 0}  \rm \: \: \dfrac{ {e}^{x}  - 1}{x}  = 1

\rm :\longmapsto\:\displaystyle \lim_{x \to 0}  \rm \: \: \dfrac{ {a}^{x}  - 1}{x}  =  log(a)

Similar questions