Math, asked by vidhi62, 1 year ago

lim x tends to 0( x^3.cotx)/1-cos x

Answers

Answered by Rsrao
16
Rationalise it than your denominator becomes sin square x then multiply and divide by x You will get answer

vidhi62: should i multiply and divide x in denominator?
Rsrao: multiple
vidhi62: not getting you
vidhi62: please help
Rsrao: What is your doupt
Answered by harendrachoubay
20

\lim_{x \to 0} \dfrac{x^3.\ cotx}{1-\cos x}=2

Step-by-step explanation:

We have,

\lim_{x \to 0} \dfrac{x^3.\ cotx}{1-\cos x}

To find, the value of \lim_{x \to 0} \dfrac{x^3.\ cotx}{1-\cos x}=?

\lim_{x \to 0} \dfrac{x^3.\ cotx}{1-\cos x}

Rationalising numerator and deniminator, we get

\lim_{x \to 0} \dfrac{x^3.\ cotx}{1-\cos x}\times\dfrac{1+\cos x}{1+\cos x}

=\lim_{x \to 0} \dfrac{x^3.\ cotx(1+\cos x)}{1^2-\cos^2 x}

=\lim_{x \to 0} \dfrac{x^3.\ cosx(1+\cos x)}{\sin x\sin^2 x}

=\lim_{x \to 0} \dfrac{x^3.\ cosx(1+\cos x)}{\sin^3 x}

=\lim_{x \to 0} \dfrac{\ cosx(1+\cos x)}{\dfrac{\sin^3 x}{x^3} }

=\lim_{x \to 0} \dfrac{\ cosx(1+\cos x)}{(\dfrac{\sin x}{x})^3}

=\lim_{x \to 0} \dfrac{\ cosx(1+\cos x)}{1}

[ ∵ =\lim_{x \to 0} \dfrac{\sin x}{x}=1]

Put x 0, we get

=\dfrac{\ cos0(1+\cos 0)}{1}

[ ∵\cos0=1]

=\dfrac{1(1+1)}{1}=2

Hence, \lim_{x \to 0} \dfrac{x^3.\ cotx}{1-\cos x}=2

Similar questions
Math, 1 year ago