Math, asked by maitrimayuribej, 4 months ago

lim x tends to 0
x÷sin5x​

Answers

Answered by adityak4m6le007
2

Step-by-step explanation:

lim x tends to 0

x/sin5x

then first try to solve with directly

i.e

lim \: x \: tends \: to \: 0  \:  \frac{x}{ \sin(5x) } \\   =  \frac{0}{ \sin(0) }  =  \frac{0}{0}  \\ the \: value  \: becomes \:  \frac{0}{0} then \\ multipling \:   \frac{x}{ \sin(5x) } \:  by \:  \sin(5x)  \\ we \: get \\ lim \: x \: tends \: to \: 0 \:  \frac{x}{ \sin(5x) }  \times  \sin(5x)  \\  =  \frac{x \times  \sin(5x) }{ \sin(5x) }  \\  =  \frac{x}{ \sin }  \times  \frac{ \sin(5x) }{5x}  \\  =  \frac{x}{ \sin }  \times 1

Similar questions