Math, asked by meghadhanvij0, 3 months ago

lim x tends to 0 x²/1-cosx​

Answers

Answered by BrainlyPopularman
15

GIVEN :

 \\\implies \displaystyle \bf \lim_{x \to0} \bigg[ \dfrac{ {x}^{2} }{1 -  \cos(x) } \bigg] \\

TO FIND :

• Value of limit = ?

SOLUTION :

Let –

 \\\implies \displaystyle \bf P = \lim_{x \to0} \bigg[ \dfrac{ {x}^{2} }{1 -  \cos(x) } \bigg] \\

• After putting limits it's in  \dfrac{0}{0} , Hence Applying L'HOSPITAL Rule –

 \\\implies \displaystyle \bf P = \lim_{x \to0} \bigg[ \dfrac{2x}{0 - \{ - \sin(x) \}} \bigg] \\

 \\\implies \displaystyle \bf P = \lim_{x \to0} \bigg[ \dfrac{2x}{0 + \sin(x)} \bigg] \\

 \\\implies \displaystyle \bf P = \lim_{x \to0} \bigg[ \dfrac{2x}{\sin(x)} \bigg] \\

• After putting limits it's in  \dfrac{0}{0} , Hence Again Applying L'HOSPITAL Rule –

 \\\implies \displaystyle \bf P = \lim_{x \to0} \bigg[ \dfrac{2}{\cos(x)} \bigg] \\

• Now put limits –

 \\\implies\bf P =\dfrac{2}{\cos(0)}  \\

• We know that –

 \\\large \longrightarrow  {\boxed{ \bf\cos(0) =1}}\\

• So that –

 \\\implies\bf P =\dfrac{2}{1}  \\

 \\\implies \large{ \boxed{\bf P =2}}\\


pulakmath007: Superb
BrainlyPopularman: Thank you sir ♥️
Answered by Anonymous
175

♣ Qᴜᴇꜱᴛɪᴏɴ :

\large\boxed{\sf{\lim _{x\:\rightarrow \:0}\left[\dfrac{x^2}{1-\cos \left(x\right)}\right]}}

★═════════════════★

♣ ᴀɴꜱᴡᴇʀ :

\large\boxed{\sf{\lim _{x\to \:0}\left(\frac{x^2}{1-\cos \left(x\right)}\right)=2}}

★═════════════════★

♣ ᴄᴀʟᴄᴜʟᴀᴛɪᴏɴꜱ :

\sf{\lim _{x\to \:0}\left(\dfrac{x^2}{1-\cos \left(x\right)}\right)}

\text{Apply L'Hopital's Rule}\\\\$=\lim _{x \rightarrow 0}\left(\dfrac{2 x}{\sin (x)}\right)$\\\\\\\text{Apply L'Hopital's Rule}\\\\$=\lim _{x \rightarrow 0}\left(\dfrac{2}{\cos (x)}\right)$

\mathrm{Use\:the\:following\:identity}:\quad \dfrac{1}{\cos \left(x\right)}=\sec \left(x\right)

=\lim _{x\to \:0}\left(2\sec \left(x\right)\right)

\mathrm{Plug\:in\:the\:value}\:x=0

=2\sec \left(0\right)

\star \sec (0)=1\star

=2\cdot \:1

\huge\boxed{\sf{=2}}

Similar questions