Math, asked by kadamsnehal, 5 months ago

lim X tends to 0 Xsin2X/tan²3X​

Answers

Answered by aryan073
4

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Question:

\red\bigstar \large\rm{ lim_{x \to 0}  \: \: \dfrac{xsin2x}{tan^2 3x}}

To find :

\red\bigstar\large\rm{lim_{ x \to 0} \: =?}

Given:

\red\bigstar\large\rm{ lim_{ x \to 0} \: \: \dfrac{xsin2x}{tan^2 3x}}

Solution :

\\ \implies\displaystyle\large\sf { lim_{ x \to 0} \: \: \dfrac{ x sin2x}{tan^2 3x}}

\\ \implies\displaystyle\large\sf{ lim_{ x \to 0 } \: \: \dfrac{ \dfrac{ x sin2x \: \times 2x}{2x}}{\dfrac{tan^2  3x \: \times 3x }{3x}}}

Properties :

\\ \pink\star\large\rm{lim_{ x \to 0} \: \: \dfrac{tanx}{x}=1}

 \\ \pink\star\large\rm{lim_{ x \to 0} \: \: \dfrac{sinx}{x}=1}

\\ \pink\star\large\rm{ lim_{x \to 0} \: \: \dfrac{cosx}{x} =1}

Put the properties In given equation :

\\ \implies\displaystyle\large\sf{ lim_{ x \to 0}\: \: \dfrac{\dfrac{x sin2x \: \times 2x}{2x}}{\dfrac{tan^2 3x \: \times 3x}{3x}}}

\\ \implies\displaystyle\large\sf{ lim_{ x \to 0} \: \: \dfrac{x \times 2x }{3x}}

\\ \implies\displaystyle\large\sf{ lim_{ x \to 0} \: \: \dfrac{2x^2}{3x}}

\\ \implies\displaystyle\large\sf{ lim_{ x \to 0} \: \: \dfrac{2 \cancel{x^2}}{3 \cancel{x}}}

\\ \implies\displaystyle\large\sf{ lim_{x \to 0} \: \: \dfrac{ 2x}{3}}

Put the value of x=0 , in given equation .

\\ \implies\displaystyle\large\sf{ lim_{x \to 0}\: \: \dfrac{ 2 \times 0}{3}}

\\ \implies\displaystyle\large\sf { lim_{ x \to 0} \: \: =0}

\pink\bigstar\large\boxed{\underline{\underline{\bf{ The \: correct \: answer \: will \: be \: 0}}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Methods to solving this question :

  1. First check the function is \dfrac{0}{0} form or not
  2. If their is \dfrac{0}{0}form , use L-hospital rule (In L-hospital Rule , \dfrac{0}{0} form removed.
  3. Also this question is solve by using first principle of differentiation .

ItzArchimedes: Superb !!
Similar questions