History, asked by EmeraldBoy, 11 hours ago

lim x tends to 0 xtanx/sin3x

and

lim x tends to infty 1/n {(m+1)(m+2) ... (m+n)}^1/n

Answers

Answered by usgaming857
2

Answer:

her is it

Explanation:

i only know the first one!!

Attachments:
Answered by AestheticSky
5

 \\  \quad \dag \underline{ \frak{ \purple{1st \:  Question : -  }}} \\

 \\  \quad \longrightarrow \quad  \displaystyle \lim _{ x  \rightarrow 0} \rm  \dfrac{x  \tan x}{ \sin 3x}  \\

L' Hospital's Rule

\\ \quad \longrightarrow \quad  \displaystyle \lim _{ x  \rightarrow a} \rm  \dfrac{f(x)}{g(x)}  = \displaystyle \lim _{ x  \rightarrow a} \rm \dfrac{f'(x)}{g'(x)}  \\

 \\ \quad \longrightarrow \quad  \displaystyle \lim _{ x  \rightarrow 0} \rm  \dfrac{ \dfrac{d}{dx} \bigg( x  \tan x \bigg)}{  \dfrac{d}{dx}  \bigg(\sin 3x \bigg)}   \\

Calculating dy/dx of xtanx:-

  • Apply product rule of differentiation.

 \\  \quad \mapsto \quad \sf  \dfrac{d}{dx}  \bigg(x  \tan x \bigg) = (x )\times  \dfrac{d}{dx}  \bigg( \tan x \bigg) + (\tan x) \times  \frac{d}{dx} \bigg(x \bigg) \\

 \\  \quad \mapsto \quad \sf  \dfrac{d}{dx}  \bigg(x  \tan x \bigg) = x  { \sec}^{2} x +  \tan x \\

Calculating dy/dx of sin3x:-

  • Apply Chain Rule Of Differentiation.

 \\  \quad \mapsto \quad \sf  \dfrac{d}{dx}  \bigg(  \sin 3x\bigg) = 3 \cos 3x \\

 \\ \quad \longrightarrow \quad  \displaystyle \lim _{ x  \rightarrow 0} \rm  \dfrac{x { \sec}^{2}x +  \tan x }{3 \cos 3x}  \\

 \\  \quad \longrightarrow \quad \sf  \dfrac{(0) { \sec}^{2}(0) +  \tan (0) }{3 \cos 3(0)}  =  \dfrac{0}{1}  =  \boxed{0} \bigstar \\

Note:- Solution to the second question is provided in the attachment kindly refer to it.

___________________________

Attachments:
Similar questions