Math, asked by Anonymous, 6 hours ago

lim x tends to 0 (xtanx)/(sin3x)

answer is 0 .

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{x \to 0}\rm  \frac{x \: tanx}{sin3x}

If we substitute directly x = 0, we get

 \rm \:  =  \: \dfrac{0 \times tan0}{sin0}

 \rm \:  =  \: \dfrac{0}{0}

which is indeterminant form.

So,

\rm :\longmapsto\:\displaystyle\lim_{x \to 0}\rm  \frac{x \: tanx}{sin3x}

 \rm \:  =  \: \displaystyle\lim_{x \to 0}\rm x \times \dfrac{tanx}{x} \times x  \times \dfrac{3x}{sin3x}  \times \dfrac{1}{3x}

 \rm \:  =  \: \displaystyle\lim_{x \to 0}\rm x \times \displaystyle\lim_{x \to 0}\rm  \frac{tanx}{x}  \times \displaystyle\lim_{x \to 0}\rm  \frac{3x}{sin3x}  \times  \frac{1}{3}

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{  \:  \:  \: \displaystyle\lim_{x \to 0}\rm  \frac{sinx}{x}  = 1  \:  \: \: }}}

and

 \pink{\rm :\longmapsto\:\boxed{\tt{  \:  \:  \: \displaystyle\lim_{x \to 0}\rm  \frac{tanx}{x}  = 1  \:  \: \: }}}

So, using this, we get

 \rm \:  =  \: 0 \times 1 \times 1 \times  \dfrac{1}{3}

 \rm \:  =  \: 0

Hence,

 \pink{\rm :\longmapsto\:\boxed{\tt{ \:  \:  \:  \:  \:  \:  \:  \displaystyle\lim_{x \to 0}\rm  \frac{x \: tanx}{sin3x}  = 0 \: \:  \:  \:   \:  \: }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Explore More

 \purple{\rm :\longmapsto\:\boxed{\tt{  \:  \:  \: \displaystyle\lim_{x \to 0}\rm  \frac{log(1 + x)}{x}  = 1  \:  \: \: }}}

 \purple{\rm :\longmapsto\:\boxed{\tt{  \:  \:  \: \displaystyle\lim_{x \to 0}\rm  \frac{ {e}^{x}  - 1}{x}  = 1  \:  \: \: }}}

 \purple{\rm :\longmapsto\:\boxed{\tt{  \:  \:  \: \displaystyle\lim_{x \to 0}\rm  \frac{ {a}^{x}  - 1}{x}  = loga  \:  \: \: }}}

Similar questions