Math, asked by skshaikh7276, 10 months ago

lim x tends to 2 (x^2-5x+6/x^2-4)​

Answers

Answered by waqarsd
3

Answer:

-0.25

Step-by-step explanation:

lim_{x \:  -  >  \: 2} \:   \frac{x^2-5x+6}{x^2-4} \\  \\ lim_{x \:  -  >  \: 2} \:   \frac{x^2-5x+6}{(x - 2)(x + 2)} \\  \\ lim_{x \:  -  >  \: 2} \:   \frac{(x - 2)(x - 3)}{(x-2)(x + 2)} \\  \\ lim_{x \:  -  >  \: 2} \:   \frac{x - 3}{x + 2} \\  \\  \frac{2 - 3}{2 + 2}  \\  \\  \frac{ - 1}{4}  \\  \\  =  > lim_{x \:  -  >  \: 2} \:   \frac{x^2-5x+6}{x^2-4} =  -  \frac{1}{4}  \\  \\

HOPE IT HELPS

Answered by Anonymous
2

Answer:

Answer:-0.25

Step-by-step explanation:

\begin{lgathered}lim_{x \: - > \: 2} \: \frac{x^2-5x+6}{x^2-4} \\ \\ lim_{x \: - > \: 2} \: \frac{x^2-5x+6}{(x - 2)(x + 2)} \\ \\ lim_{x \: - > \: 2} \: \frac{(x - 2)(x - 3)}{(x-2)(x + 2)} \\ \\ lim_{x \: - > \: 2} \: \frac{x - 3}{x + 2} \\ \\ \frac{2 - 3}{2 + 2} \\ \\ \frac{ - 1}{4} \\ \\ = > lim_{x \: - > \: 2} \: \frac{x^2-5x+6}{x^2-4} = - \frac{1}{4} \\ \\\end{lgathered}

Similar questions