Lim x tends to 2 (x^2-x-
2)^20/(x^3-12x+16)^10 ?
Answers
Answered by
13
Solution :
Here, x² - x - 2
= x² - 2x + x - 2
= x (x - 2) + 1 (x - 2)
= (x - 2) (x + 1)
and x³ - 12x + 16
= x³ - 2x² + 2x² - 4x - 8x + 16
= x² (x - 2) + 2x (x - 2) - 8 (x - 2)
= (x - 2) (x² + 2x - 8)
= (x - 2) (x² + 4x - 2x - 8)
= (x - 2) {x (x + 4) - 2 (x + 4) }
= (x - 2) (x - 2) (x + 4)
= (x - 2)² (x + 4)
∴ (x² - x - 2)²⁰/(x³ - 12x + 16)¹⁰
= {(x - 2) (x + 1)}²⁰/{(x - 2)² (x + 4)}¹⁰
= {(x - 2)²⁰ (x + 1)²⁰}/{(x - 2)²⁰ (x + 4)¹⁰}
= (x + 1)²⁰/(x + 4)¹⁰ ,
since x ⇢ 2 does not imply x = 2
∴ lim (x ⇢ 2) (x² - x - 2)²⁰/(x³ - 12x + 16)¹⁰
= lim (x ⇢ 2) (x + 1)²⁰/(x + 4)¹⁰
= (2 + 1)²⁰/(2 + 4)¹⁰
= 3²⁰/6¹⁰
= 3²⁰/(3 * 2)¹⁰
= 3²⁰/(3¹⁰ * 2¹⁰)
= (3²⁰ ⁻ ¹⁰)/2¹⁰
= 3¹⁰/2¹⁰
= (3/2)¹⁰ ( Ans. )
Similar questions
English,
6 months ago
Computer Science,
6 months ago
English,
6 months ago
Math,
11 months ago
Computer Science,
11 months ago