Math, asked by tanvimayekar2003, 10 months ago

lim x tends to 2
(x^4 – 16/x^2-5x+6)​

Answers

Answered by Anonymous
46

Solution :

Given Expression,

 \sf \displaystyle \lim_{x \longrightarrow \: 2} \:   \:  \:  \dfrac{ {x}^{4} - 16 }{ {x}^{2}  - 5x + 6}  \\

At 2,the given function is in indeterminable form (0/0 form)

 \displaystyle \lim_{x \longrightarrow \: 2} \sf \dfrac{ {x}^{4} - 16 }{ {x}^{2}  - 5x + 6}  \\

The numerator and denominator can be expressed as :

 \implies\displaystyle \lim_{x \longrightarrow \: 2} \sf \dfrac{(x {}^{2} + 4)(x {}^{2}   - 4)}{ {x}^{2} - 2x - 3x + 6 }  \\  \\  \implies \:  \displaystyle \sf \lim_{x \longrightarrow \: 2} \dfrac{( {x}^{2} + 4)(x + 2)(x - 2) }{(x - 2)(x - 3)}  \\  \\  \implies \:  \sf \:  \dfrac{( {2}^{2}  + 4)(2 + 2)}{(2 - 3)}  \\  \\  \implies   \sf{ - 32}

Answered by musshaikh
0

Step-by-step explanation:

Similar questions