Math, asked by mahakmayani, 5 months ago

lim x tends to 3 √2x+3 -√4x-3/ x^2 -9​

Answers

Answered by shadowsabers03
12

We're asked to evaluate,

\displaystyle\longrightarrow L=\lim_{x\to3}\dfrac{\sqrt{2x+3}-\sqrt{4x-3}}{x^2-9}

On taking x=3 directly we get indeterminate form.

\displaystyle\longrightarrow\dfrac{\sqrt{2\cdot3+3}-\sqrt{4\cdot3-3}}{3^2-9}=\dfrac{0}{0}

Then by L'Hospital's Rule,

\displaystyle\longrightarrow L=\lim_{x\to3}\dfrac{\dfrac{2}{2\sqrt{2x+3}}-\dfrac{4}{2\sqrt{4x-3}}}{2x}

\displaystyle\longrightarrow L=\lim_{x\to3}\dfrac{\dfrac{1}{\sqrt{2x+3}}-\dfrac{2}{\sqrt{4x-3}}}{2x}

\displaystyle\longrightarrow L=\lim_{x\to3}\dfrac{\sqrt{4x-3}-2\sqrt{2x+3}}{2x\sqrt{(2x+3)(4x-3)}}

Taking x=3,

\displaystyle\longrightarrow L=\dfrac{\sqrt{4\cdot3-3}-2\sqrt{2\cdot3+3}}{2\cdot3\sqrt{(2\cdot3+3)(4\cdot3-3)}}

\displaystyle\longrightarrow\underline{\underline{L=-\dfrac{1}{18}}}

Similar questions