Math, asked by bswathigowda2002, 1 year ago

lim x tends to 4 x^2-7x+12÷x^2-3x-4​

Answers

Answered by RVSTARK
3

Answer:

1/5

Step-by-step explanation:

Since it is giving 0/0 form on substituting x with 4.

Use L'Hopital's Rule

Take derivatives of numerator and denominator

d/dx (4x^2 -7x +12)

and

d/dx (x^2 -3x -4)

Now we are left with

lim (x–>4) 2x-7/2x-3

Now put value of x in above equation

to give us the answer

1/5

Answered by llSecreTStarll
12

Solution :

when we have substitute x = 2 then we get 0/0,

Now Simplifying the Given limit :

 \rm \:\underset{x \longrightarrow2}{lim} \:  \frac{ {3x}^{2} - x - 10 }{ {x}^{2} - 4 }  \\  \\ \rm \:\underset{x \longrightarrow2}{lim} \:  \frac{3 {x}^{2}  - 6x + 5x - 10}{ {x}^{2} -  {2}^{2}  }  \\  \\ \rm \:\underset{x \longrightarrow2}{lim} \:  \frac{3x(x - 2) + 5(x - 2)}{(x + 2)(x - 2)}  \\  \\ \rm \:\underset{x \longrightarrow2}{lim} \:  \frac{(3x + 5) \cancel{(x - 2)}}{(x + 2) \cancel{(x - 2)}}  \\  \\ \rm \:\underset{x \longrightarrow2}{lim} \:   \frac{3x + 5}{x + 2}  \\  \\  \rm \:  =  \frac{3 \times 2 + 5}{2 + 2}  \\  \\ \rm \:  =  \frac{6 + 5}{4}  \\  \\ \rm \:  =  \frac{11}{4}

━━━━━━━━━━━━━━━━━━━━━━━━━

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Done࿐

Similar questions