Math, asked by nimmo32, 1 year ago

lim x tends to 5 then :-

Attachments:

Answers

Answered by aayushpbt56gmailcom
1
I hope this helps you
mark as a brainlist
Attachments:

nimmo32: can you plzz re post the solution
aayushpbt56gmailcom: yes ok
nimmo32: thanks
Answered by Anonymous
3

ANSWER :

 \sf\lim_{x \to \:5} \frac{ {x}^{4}  - 625}{ {x}^{3}  - 125} \\

 \implies \sf \lim_{x \to \: 5} \frac{( {x}^{2}  + 25)( {x}^{2} - 25) }{( x - 5)( {x}^{2}  + 5x +  {5}^{2}) }  \\

 \implies \sf \lim_{x \to \: 5} \frac{( {x}^{2}  + 25)( {x}  +  5) \cancel{(x - 5) }}{ \cancel{( x - 5)}( {x}^{2}  + 5x +  {5}^{2}) }  \\

Putting value of lim

 \sf \implies \frac{(25 + 25)(5 + 5)}{ {5}^{2} + 5 \times 5 +  {5}^{2}  }  \\

 \sf \implies  \frac{500}{75}  \\

Similar questions