Math, asked by Sachinverma1921, 4 days ago

lim x tends to infinity √x+1-√x

Answers

Answered by senboni123456
3

Step-by-step explanation:

We have,

  \displaystyle \tt{ \lim_{x \to \infty} \left( \sqrt{x + 1}   -  \sqrt{x} \right)}

  \displaystyle \tt{  = \lim_{x \to \infty} \dfrac{ \left( \sqrt{x + 1}   -  \sqrt{x} \right) \left(  \sqrt{x + 1} +  \sqrt{x}  \right)}{ \left( \sqrt{x + 1} +  \sqrt{x}   \right)}}

  \displaystyle \tt{  = \lim_{x \to \infty} \dfrac{ x + 1-  x }{  \sqrt{x + 1} +  \sqrt{x}   }}

  \displaystyle \tt{  = \lim_{x \to \infty} \dfrac{ 1 }{  \sqrt{x + 1} +  \sqrt{x}   }}

  \displaystyle \tt{  = \dfrac{ 1 }{   \infty  }}

  \displaystyle \tt{  = 0}

Answered by benitabeni1908
2

Step-by-step explanation:

hope it helps you ..

i have explained step by step ...

Attachments:
Similar questions