Lim x tends to infinity x^2+5x-2/2x^2+5x+1
Answers
Answered by
0
Answer:
limx→∞(x2+5x+3x2+x+2)x
limx→∞(x2+x+2+4x+1x2+x+2)x
limx→∞(1+4x+1x2+x+2)x
limx→∞(1+4x+1x2+x+2)x2+x+24x+1⋅4x+1x2+x+2⋅x
limx→∞(1+1f(x))f(x)⋅g(x)
f(x)=x2+x+24x+1 and g(x)=(4x+1)⋅xx2+x+2
also we know that
limf(x)→∞(1+1f(x))f(x)=e
so answer will be
elimx→∞g(x)
because limx→∞f(x)=limx→∞x2+x+24x+1=∞
limx→∞g(x)=limx→∞(4x+1)⋅xx2+x+2=4
limx→∞(x2+5x+3x2+x+2)x=elimx→∞g(x)=e4
Similar questions