lim (x tends to infinity).
(x+2)arctan(x+2) -x(arctan(x))
Answers
Answered by
2
lim(x--->infty) {(x+2)arctan(x+2)-x.arctanx}
this is in the form of infty - nifty
use expansion of arctanP = pi/2 - 1/P + 1/3P^3 - 1/5P^5+........infty
then,
lim(x--->infty)[(x+2){pi/2-1/(x+2)+1/3(x+2)^3-1/5(x+2)^5....infty}-x{pi/2-1/x+1/3x^3-1/5x^5+.....infty} ]
=lim(x--->infty)[pi/2(x+2)-1+1/3(x+2)^2-1/5(x+2)^4..... -pi/2x +1 -1/3x^2+1/5x^4.....]
put x--->infty
= 0 -1 + 0 -0......-0+1-0+0-0......
=0
hence answer is 0
this is in the form of infty - nifty
use expansion of arctanP = pi/2 - 1/P + 1/3P^3 - 1/5P^5+........infty
then,
lim(x--->infty)[(x+2){pi/2-1/(x+2)+1/3(x+2)^3-1/5(x+2)^5....infty}-x{pi/2-1/x+1/3x^3-1/5x^5+.....infty} ]
=lim(x--->infty)[pi/2(x+2)-1+1/3(x+2)^2-1/5(x+2)^4..... -pi/2x +1 -1/3x^2+1/5x^4.....]
put x--->infty
= 0 -1 + 0 -0......-0+1-0+0-0......
=0
hence answer is 0
Similar questions