Math, asked by richaeldisuza, 1 year ago

Lim x tends to O xtanx/1-cosx
Plzzzzz give the answer its urgent and plzz solve it step wise

Answers

Answered by Anonymous
5
I hope it helps uh..

'
Attachments:

richaeldisuza: 1-cosx=2sin^2x/2....how di plz say
Anonymous: Yh see 1-cos x = 1-(1-2 sinsq x/2)= 1-1+2 sin sq x/2 then 1 ,1 cancel and we found 2 sin sq x/2
Anonymous: It's also a formula
richaeldisuza: Thankeww evry1
Anonymous: Do u understand?
richaeldisuza: Yeah
Anonymous: Hey kon every 1 eska ans only mane diya h
richaeldisuza: Thanks a lot di i got it plz help me further also
Anonymous: Ohk sure
richaeldisuza: ☺☺
Answered by harendrachoubay
9

The value of \lim_{x \to 0} \dfrac{x\tan x}{1-\cos x} is equal to 2.

Step-by-step explanation:

We have,

\lim_{x \to 0} \dfrac{x\tan x}{1-\cos x}

To find, the value of \lim_{x \to 0} \dfrac{x\tan x}{1-\cos x} = ?

\lim_{x \to 0} \dfrac{x\tan x}{1-\cos x}

=\lim_{x \to 0} \dfrac{x\sin x}{\cos x(1-\cos x)}

Multiply numerator and denominator by \sin x, we get

=\lim_{x \to 0} \dfrac{x\sin^2 x}{\sin x\cos x(1-\cos x)}

Using the trigonometric identity,

\sin^2 A+\cos^2 A=1

\sin^2 A=1-\cos^2 A

=\lim_{x \to 0} \dfrac{x(1-\cos^2 x)}{\sin x\cos x(1-\cos x)}

=\lim_{x \to 0} \dfrac{x(1+\cos x)(1-\cos x)}{\sin x\cos x(1-\cos x)}

=\lim_{x \to 0} \dfrac{x(1+\cos x)}{\sin x\cos x}

=\lim_{x \to 0} \dfrac{(1+\cos x)}{\dfrac{\sin x}{x} \cos x}

=\lim_{x \to 0} \dfrac{(1+\cos x)}{1. \cos x}

= \dfrac{(1+\cos 0)}{1. \cos 0}\\

= \dfrac{1+1}{1}

= 2

∴ The value of \lim_{x \to 0} \dfrac{x\tan x}{1-\cos x} = 2

Thus, the value of \lim_{x \to 0} \dfrac{x\tan x}{1-\cos x} is equal to 2.

Similar questions