Math, asked by samrat101sa, 6 months ago

lim(x tends to p) (x^2-p^2)/tan(x-p)​

Answers

Answered by pulakmath007
2

SOLUTION

TO EVALUATE

\displaystyle  \sf \: \lim_{x \to p} \:  \frac{ {x}^{2} -  {p}^{2}  }{ \tan (x - p)}

EVALUATION

Here the given limit is

\displaystyle  \sf \: \lim_{x \to p} \:  \frac{ {x}^{2} -  {p}^{2}  }{ \tan (x - p)}

We simplify it as below

\displaystyle  \sf \: \lim_{x \to p} \:  \frac{ {x}^{2} -  {p}^{2}  }{ \tan (x - p)} \:  \:  \:  \:  \bigg(  \frac{0}{0} \: form \bigg)

\displaystyle  \sf \: =  \lim_{x \to p} \:  \frac{ 2x - 0 }{ 1. { \sec}^{2}  (x - p)}

\displaystyle  \sf \: =  \lim_{x \to p} \:  \frac{ 2x  }{  { \sec}^{2}  (x - p)}

\displaystyle  \sf \: =  \:  \frac{ 2p  }{  { \sec}^{2}  (p - p)}

\displaystyle  \sf \: =  \:  \frac{ 2p  }{  { \sec}^{2} 0 }

\displaystyle  \sf \: =  \:  2p

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Lim x--a (f(x) - f(a))/(x-a) gives

https://brainly.in/question/35766042

2. Lim x→0 (log 1+8x)/x

https://brainly.in/question/18998465

Similar questions