Math, asked by Anonymous, 7 months ago

lim (x tends to pi/2) sec7x/sec5x​

Answers

Answered by pulakmath007
14

SOLUTION

TO EVALUATE

\displaystyle \lim_{x \to  \frac{\pi}{2} }  \:  \frac{ \sec 7x}{ \sec 5x}

EVALUATION

SOLVE USING L' HOSPITAL RULE

\displaystyle \lim_{x \to  \frac{\pi}{2} }  \:  \frac{ \sec 7x}{ \sec 5x}  \:  \:  \bigg( \sf{  \frac{ \infty }{ \infty } \: form  \bigg)}

 = \:  \:  \displaystyle \lim_{x \to  \frac{\pi}{2} }  \:  \frac{ \frac{1}{ \cos 7x} }{  \frac{1}{ \cos 5x} }  \:

 =  \: \displaystyle \lim_{x \to  \frac{\pi}{2} }  \:  \frac{  \cos 5x}{ \cos 7x}  \:  \sf{ \: \bigg(  \:  \frac{0}{0}  \: form  \bigg)}

 =  \: \displaystyle \lim_{x \to  \frac{\pi}{2} }  \:  \frac{  - 5 \sin 5x}{ - 7 \sin 7x}  \:

 =   \: \displaystyle  \:  \frac{5}{7}  \: \lim_{x \to  \frac{\pi}{2} }  \:  \frac{  \sin 5x}{  \sin 7x}  \:

 =   \: \displaystyle  \:  \frac{5}{7}  \:  \times   \:  \frac{  \sin  \frac{5\pi}{2} }{  \sin  \frac{7\pi}{2} }  \:

 =   \: \displaystyle  \:  \frac{5}{7}  \:  \times   \:  \frac{  1 }{   - 1 }  \:

 =   \: \displaystyle  \:   - \frac{5}{7}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. the value of limited x to 0 sin7x+sin5x÷tan5x-tan2x is

https://brainly.in/question/28582236

2. Lim x→0 (log 1+8x)/x

https://brainly.in/question/18998465

Answered by BrainlyKingdom
1

\rm{\displaystyle\lim _{x\to \frac{\pi }{2}}\left(\frac{\sec \left(7x\right)}{\sec \left(5x\right)}\right)}

  • We are All Aware of Basic Trigonometry Identity  \rm{sec(x)=\dfrac{1}{cos(x)}}

\rm{\displaystyle=\lim _{x\to \frac{\pi }{2}}\frac{\frac{1}{\cos \left(7x\right)}}{\sec \left(5x\right)}}

\rm{\displaystyle=\lim _{x\to \frac{\pi }{2}}\frac{\frac{1}{\cos \left(7x\right)}}{\frac{1}{\cos \left(5x\right)}}}

\rm{\displaystyle=\lim _{x\to \frac{\pi }{2}}\left(\frac{\cos \left(5x\right)}{\cos \left(7x\right)}\right)}

  • Apply L'Hopital's Rule

____________________________________

\underline{\underline{\mathbf{L'Hopital\:Theorem:}}}

\displaystyle\mathrm{For}\:\lim _{x\to a}\left(\frac{f\left(x\right)}{g\left(x\right)}\right),\:\mathrm{if}\:\lim _{x\to a}\left(\frac{f\left(x\right)}{g\left(x\right)}\right)=\frac{0}{0}\quad \mathrm{or}\quad \lim _{x\to \:a}\left(\frac{f\left(x\right)}{g\left(x\right)}\right)=\frac{\pm \infty }{\pm \infty },\:\mathrm{then}}

\displaystyle\bf{\lim _{x\to a}\left(\frac{f\left(x\right)}{g\left(x\right)}\right)=\lim _{x\to a}\left(\frac{f\:^'\left(x\right)}{g\:^'\left(x\right)}\right)}

____________________________________

\rm{\displaystyle=\lim _{x\to \frac{\pi }{2}}\left(\frac{\left(\cos \left(5x\right)\right)^{'\:}}{\left(\cos \left(7x\right)\right)^{'\:}}\right)}

\rm{\displaystyle=\lim _{x\to \frac{\pi }{2}}\left(\frac{-\sin \left(5x\right)\cdot \:5}{-\sin \left(7x\right)\cdot \:7}\right)}

\rm{\displaystyle=\lim _{x\to \frac{\pi }{2}}\left(\frac{5\sin \left(5x\right)}{7\sin \left(7x\right)}\right)}

  • Plug in the value x = π/2

\rm{\displaystyle=\frac{5\sin \left(5\cdot \frac{\pi }{2}\right)}{7\sin \left(7\cdot \frac{\pi }{2}\right)}}

\rm{\displaystyle=\frac{5}{7\sin \left(7\cdot \frac{\pi }{2}\right)}}

\rm{\displaystyle=\frac{5}{-7}}

\rm{\displaystyle=-\frac{5}{7}}

Similar questions