lim x tends to (pi/4)
Attachments:
Answers
Answered by
4
Setting π4−x=2h
tanx=tan(π4−2h)=1−tan2h1+tan2h ⟹1−tanx=2tan2h1+tan2h
and sinx=sin(π4−2h)=cos2h−sin2h2–√
limx→π41−tanx1−2–√sinx=limh→02tan2h(1+tan2h)(1−cos2h+sin2h)
=limh→0sin2h1−cos2h+sin2h⋅limh→02cos2h(1+tan2h)
Now the second limit is easy,
For the first using Double-Angle Formulas, sin2h1−cos2h+sin2h=2sinhcosh1−(1−2sin2h)+2sinhcosh =coshsinh+cosh if sinh≠0 which is true as h→0....
Hope it helps you!!
Similar questions