Math, asked by akash576389, 5 months ago

Lim x tends to zero a minus roor a square minus x square by x square

Attachments:

Answers

Answered by Anonymous
12

Given Expression,

\displaystyle  \sf \lim_{ x \to \: 0}  \dfrac{a -  \sqrt{ {a}^{2}  -  { {x}^{2} }^{} } }{ {x}^{2} }

Dividing and Multiplying by a + √a² + x².

 \longrightarrow \sf \: \displaystyle  \sf \lim_{ x \to \: 0} \:  \:   \dfrac{a -  \sqrt{ {a}^{2}  -  { {x}^{2} }^{} } }{ {x}^{2} }  \times  \dfrac{a +  \sqrt{a {}^{2} -  {x}^{2}  } }{a +  \sqrt{ {a}^{2} -  {x}^{2}  } }  \\  \\ \longrightarrow \sf \: \displaystyle  \sf \lim_{ x \to \: 0} \:  \:   \dfrac{a {}^{2}  -  (\sqrt{ {a}^{2}  -  { {x}^{2} }^{} }) {}^{2}  }{ {x}^{2} (a +  \sqrt{ {a}^{2} -  {x}^{2}  } )}   \\  \\  \longrightarrow \sf \: \displaystyle  \sf \lim_{ x \to \: 0}   \:  \: \dfrac{a {}^{2}  - ( {a}^{2} - x {}^{2}  ) }{ {x}^{2} (a +  \sqrt{ {a}^{2} -  {x}^{2}  } )} \\  \\   \longrightarrow \sf \: \:  \displaystyle  \sf \lim_{ x \to \: 0}   \:  \: \dfrac{a {}^{2}  -  {a}^{2}  + x {}^{2}   }{ {x}^{2} (a +  \sqrt{ {a}^{2} -  {x}^{2}  })} \\  \\   \longrightarrow \sf \: \:  \displaystyle  \sf \lim_{ x \to \: 0}  \:  \:  \dfrac{x {}^{2}   }{ {x}^{2} (a +  \sqrt{ {a}^{2} -  {x}^{2}  })} \\  \\ \longrightarrow \sf \: \:  \displaystyle  \sf \lim_{ x \to \: 0}   \: \dfrac{1}{a +  \sqrt{ {a}^{2} -  {x}^{2}  }}

Putting x = 0,

 \longrightarrow \sf \:  \dfrac{1}{ {a}^{}  +  \sqrt{ {a}^{2}  + 0} }  \\  \\  \longrightarrow \sf \:  \dfrac{1}{ {a}^{}  +  a } \\  \\ \longrightarrow \sf \:  \dfrac{1}{2a }

Thus,

\displaystyle  \sf \lim_{ x \to \: 0}  \:  \dfrac{a -  \sqrt{ {a}^{2}  -  { {x}^{2} }^{} } }{ {x}^{2} }  =  \dfrac{1}{2a}


Asterinn: Great!
Similar questions