Math, asked by bishal668530, 10 months ago

lim x tends to3 (x²-9)(1/x+3+1/x-3)​

Answers

Answered by Anonymous
75

Given :-

 \displaystyle \lim _  {x \to 3}( {x}^{2} - 9) (\frac{1}{x + 3}  +  \frac{1}{x - 3}  ) \\

Solution :-

 \displaystyle \lim _  {x \to 3}( {x}^{2} - 9) (\frac{1}{x + 3}  +  \frac{1}{x - 3}  ) \\

Taking LCM .

\sf{\implies \displaystyle \lim _  {x \to 3}( {x}^{2} - 9) (\frac{x-3+x+3}{(x+3)(x-3)}  ) } \\

\sf{\implies \displaystyle \lim _  {x \to 3}( {x}^{2} - 9) (\frac{2x}{(x+3)(x-3)}  )} \\

Now we know that (a+b)(a-b)= -b² .

\sf{\implies\displaystyle \lim _  {x \to 3}( {x}^{2} - 9) (\frac{2x}{{x}^{2} - {3}^{2}}  )} \\

\sf{\implies\displaystyle \lim _  {x \to 3}( {x}^{2} - 9) (\frac{2x}{{x}^{2} - 9}  ) }\\

\sf{\implies \displaystyle \lim _  {x \to 3}( \cancel{ {x}^{2} - 9}) ( \frac{2x}{ \cancel{x {}^{2} - 9 }}  )} \\

\sf{\implies \displaystyle \lim _  {x \to 3}(2x) )} \\

Putting the value of x here.

\sf{\implies 2(3) = 6}\\

\boxed{\sf{\implies \displaystyle \lim _  {x \to 3}( {x}^{2} - 9) (\frac{1}{x + 3}  +  \frac{1}{x - 3}) = 6  }}\\ .

Answered by Anonymous
53

{\underline{\sf{Question}}}

Evaluate the limit

 \displaystyle \lim _  {x \to 3}( {x}^{2} - 9) (\frac{1}{x + 3}  +  \frac{1}{x - 3}  ) \\

{\underline{\sf{Solution}}}

We have to evaluate  \displaystyle \lim _  {x \to 3}( {x}^{2} - 9) (\frac{1}{x + 3}  +  \frac{1}{x - 3}  ) \\

Take the LCM ,Then

 \displaystyle \lim _  {x \to 3}( {x}^{2} - 9) ( \frac{x - 3 + x  + 3}{(x - 3)(x + 3)}  ) \\

 \displaystyle \lim _  {x \to 3}( {x}^{2} - 9) ( \frac{2x}{x {}^{2} - 9 }  ) \\

 \displaystyle \lim _  {x \to 3}( \cancel{ {x}^{2} - 9}) ( \frac{2x}{ \cancel{x {}^{2} - 9 }}  ) \\

 \displaystyle \lim _  {x \to 3}2x

=  \displaystyle2 \times 3

 = 6

\rule{200}2

Read More :

1) Ltx>0 x-tanx/x-sinx

brainly.in/question/17551029

2)lim ₓ→₁₋ [√π – √(2sin⁻¹ x)]/√(1 – x)

brainly.in/question/16192090

Similar questions