Math, asked by dhanush1024, 6 months ago

lim ((x/|x|) +1)
x➡0​

Answers

Answered by shadowsabers03
6

First let us find left hand limit.

For \displaystyle\sf {x\leq 0,}

\displaystyle\sf{\longrightarrow |x|=-x}

\displaystyle\sf{\longrightarrow \dfrac {x}{|x|}=-1}

\displaystyle\sf{\longrightarrow \dfrac {x}{|x|}+1=0}

Therefore,

\displaystyle\sf{\longrightarrow\lim_{x\to 0^-}\left (\dfrac {x}{|x|}+1\right)=0\quad\quad\dots(1)}

Now let us find right hand limit.

For \displaystyle\sf {x\geq 0,}

\displaystyle\sf{\longrightarrow |x|=x}

\displaystyle\sf{\longrightarrow \dfrac {x}{|x|}=1}

\displaystyle\sf{\longrightarrow \dfrac {x}{|x|}+1=2}

Therefore,

\displaystyle\sf{\longrightarrow\lim_{x\to 0^+}\left (\dfrac {x}{|x|}+1\right)=2\quad\quad\dots(2)}

Comparing (1) and (2),

\displaystyle\sf{\longrightarrow \lim_{x\to 0^-}\left (\dfrac {x}{|x|}+1\right)\neq\lim_{x\to 0^+}\left (\dfrac {x}{|x|}+1\right)}

Hence the limit does not exist.

Similar questions