Math, asked by shravanimandve05, 1 month ago

Lim [xn-4n/x-4]=48 and n€N, find n.
X-->4

Answers

Answered by mathdude500
28

\begin{gathered}\Large{\bold{{\underline{Formula \: Used - }}}}  \end{gathered}

\begin{gathered}(1)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to \: a} \: \dfrac{ {x}^{n}  -  {a}^{n} }{x - a} \:  =  \:  {na}^{n - 1}}}}}}} \\ \end{gathered}

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\: \displaystyle\bf \:\lim_{x\to 4} \: \dfrac{ {x}^{n}  -  {4}^{n}}{x - 4} = 48

Using the above result, we get

\rm :\longmapsto\: {n(4)}^{n - 1} = 48

\rm :\longmapsto\: {n(4)}^{n - 1} = 4 \times 4 \times 3

\rm :\longmapsto\: {n(4)}^{n - 1} =  {4}^{2}  \times 3

\rm :\longmapsto\: {n(4)}^{n - 1} =  {(4)}^{3 - 1}  \times 3

So, on comparing we get

\rm :\implies\:n \:  =  \: 3

Additional Information :-

\begin{gathered}(1)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: \dfrac{sin \: x}{x} \:  =  \: 1 }}}}}} \\ \end{gathered}

\begin{gathered}(2)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: \dfrac{tan \: x}{x} \:  =  \: 1 }}}}}} \\ \end{gathered}

\begin{gathered}(3)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: \dfrac{ {sin}^{ - 1} \: x}{x} \:  =  \: 1 }}}}}} \\ \end{gathered}

\begin{gathered}(4)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: \dfrac{ {tan}^{ - 1} \: x}{x} \:  =  \: 1 }}}}}} \\ \end{gathered}

\begin{gathered}(5)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: \dfrac{log(1  \: +  \: x)}{x} \:  =  \: 1 }}}}}} \\ \end{gathered}

\begin{gathered}(6)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: \dfrac{ {e}^{x} \:  -  \: 1 }{x} \:  =  \: 1 }}}}}} \\ \end{gathered}

\begin{gathered}(7)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: \dfrac{ {a}^{x} \:  -  \: 1 }{x} \:  =  \:  log(a)  }}}}}} \\ \end{gathered}

Similar questions