Math, asked by joeljthommana, 8 months ago

lim z^{1/3} - 1 / z^1/6 - 1 z→1

Answers

Answered by shadowsabers03
15

We're asked to evaluate,

\displaystyle\longrightarrow\sf{\lim_{z\to1}\left(\dfrac{z^{\frac{1}{3}}-1}{z^{\frac{1}{6}}-1}\right)=\,?}

If we directly take \sf{z=1} we get indeterminate form.

\displaystyle\longrightarrow\sf{\lim_{z\to1}\left(\dfrac{z^{\frac{1}{3}}-1}{z^{\frac{1}{6}}-1}\right)=\dfrac{1^{\frac{1}{3}}-1}{1^{\frac{1}{6}}-1}}

\displaystyle\longrightarrow\sf{\lim_{z\to1}\left(\dfrac{z^{\frac{1}{3}}-1}{z^{\frac{1}{6}}-1}\right)=\dfrac{1-1}{1-1}}

\displaystyle\longrightarrow\sf{\lim_{z\to1}\left(\dfrac{z^{\frac{1}{3}}-1}{z^{\frac{1}{6}}-1}\right)=\dfrac{0}{0}}

Let us divide both the numerator and denominator of the fraction by \sf{z-1}.

\displaystyle\longrightarrow\sf{\lim_{z\to1}\left(\dfrac{z^{\frac{1}{3}}-1}{z^{\frac{1}{6}}-1}\right)=\lim_{z\to1}\left(\dfrac{\frac{z^{\frac{1}{3}}-1}{z-1}}{\frac{z^{\frac{1}{6}}-1}{z-1}}\right)}

The limit can be distributed to the numerator and the denominator each as,

\displaystyle\longrightarrow\sf{\lim_{z\to1}\left(\dfrac{z^{\frac{1}{3}}-1}{z^{\frac{1}{6}}-1}\right)=\dfrac{\displaystyle\lim_{z\to1}\left(\frac{z^{\frac{1}{3}}-1}{z-1}\right)}{\displaystyle\lim_{z\to1}\left(\frac{z^{\frac{1}{6}}-1}{z-1}\right)}}

Or,

\displaystyle\longrightarrow\sf{\lim_{z\to1}\left(\dfrac{z^{\frac{1}{3}}-1}{z^{\frac{1}{6}}-1}\right)=\dfrac{\displaystyle\lim_{z\to1}\left(\frac{z^{\frac{1}{3}}-1^{\frac{1}{3}}}{z-1}\right)}{\displaystyle\lim_{z\to1}\left(\frac{z^{\frac{1}{6}}-1^{\frac{1}{6}}}{z-1}\right)}\quad\quad\dots(1)}

Let us recall the formula,

\displaystyle\longrightarrow\sf{\lim_{x\to a}\left(\dfrac{x^n-a^n}{x-a}\right)=na^{n-1}}

Thus we have,

\displaystyle\longrightarrow\sf{\lim_{z\to1}\left(\dfrac{z^{\frac{1}{3}}-1^{\frac{1}{3}}}{z-1}\right)=\dfrac{1}{3}\cdot(1)^{\frac{1}{3}-1}}

\displaystyle\longrightarrow\sf{\lim_{z\to1}\left(\dfrac{z^{\frac{1}{3}}-1^{\frac{1}{3}}}{z-1}\right)=\dfrac{1}{3}}

And,

\displaystyle\longrightarrow\sf{\lim_{z\to1}\left(\dfrac{z^{\frac{1}{6}}-1^{\frac{1}{6}}}{z-1}\right)=\dfrac{1}{6}\cdot(1)^{\frac{1}{6}-1}}

\displaystyle\longrightarrow\sf{\lim_{z\to1}\left(\dfrac{z^{\frac{1}{6}}-1^{\frac{1}{6}}}{z-1}\right)=\dfrac{1}{6}}

Then (1) becomes,

\displaystyle\longrightarrow\sf{\lim_{z\to1}\left(\dfrac{z^{\frac{1}{3}}-1}{z^{\frac{1}{6}}-1}\right)=\dfrac{\left(\dfrac{1}{3}\right)}{\left(\dfrac{1}{6}\right)}}

\displaystyle\sf{\longrightarrow\sf{\underline{\underline{\lim_{z\to1}\left(\dfrac{z^{\frac{1}{3}}-1}{z^{\frac{1}{6}}-1}\right)=2}}}

Hence 2 is the answer.

Similar questions