Math, asked by Divyansh8339, 1 year ago

limit 0 to π/2 ∫ tan^8x + tan^10x dx

Answers

Answered by hukam0685
0

Answer:

limit 0 to π/2 ∫ tan^8x + tan^10x dx =∞

Step-by-step explanation:

To integrate

 \int \: ( {tan}^{8} x +  {tan}^{10} x)dx \\  \\   \int \:  {tan}^{8} x(1 +  {tan}^{2} x)dx \\  \\ \because \: 1 + {tan}^{2} x =  {sec}^{2} x \\  \\  \int \:  {tan}^{8} x \:  {sec}^{2} x \: dx \\  \\ \: let \:  \: tan \: x = t \\  \\  {sec}^{2} x \: dx = dt \\  \\ \int \:  {t}^{8}  \: dt  = \frac{ {t}^{9} }{9}  + c \\  \\ redo \: substitution \\  \\ \int \: ( {tan}^{8} x +  {tan}^{10} x)dx = \frac{ {tan}^{9} x}{9}  + c \\ \\

Now to integrate the function from 0 to π/2,place upper and lower limit in the RHS

\int\limit_{0}^{\frac{\pi}{2}}( {tan}^{8} x +  {tan}^{10} x) \, dx =\Big[\frac{ {tan}^{9} x}{9}\Big]\limit_{0}^{\frac{\pi}{2}}\\\\ =\frac{ {tan}^{9}\frac{\pi}{2} }{9} -\frac{ {tan}^{9}0}{9}=\infty\\\\

Hope it helps you.

Answered by ujalasingh385
0

Answer:

Step-by-step explanation:

To integrate  

\int \: ( {tan}^{8} x +  {tan}^{10} x)dx  

\int \:  {tan}^{8} x(1 +  {tan}^{2} x)dx

\because \: 1 + {tan}^{2} x =  {sec}^{2} x  

\int \:  {tan}^{8} x \:  {sec}^{2} x \: dx

\: let \:  \: tan \: x = t  

{sec}^{2} x \: dx = dt

\int \:  {t}^{8}  \: dt  = \frac{ {t}^{9} }{9}  + c

redo \: substitution

\int \: ( {tan}^{8} x +  {tan}^{10} x)dx = \frac{ {tan}^{9} x}{9}  + c

Now to integrate the function from 0 to π/2,place upper and lower limit in the RHS

\int\limit_{0}^{\frac{\pi}{2}}( {tan}^{8} x +  {tan}^{10} x) \, dx =\Big[\frac{ {tan}^{9} x}{9}\Big]\limit_{0}^{\frac{\pi}{2}

=\frac{ {tan}^{9}\frac{\pi}{2} }{9} -\frac{ {tan}^{9}0}{9}=\infty

Similar questions