Math, asked by roop98, 1 year ago

limit 0 to Pi /2 integration xsinx

Attachments:

Answers

Answered by MaheswariS
13

Answer:

\bf\int\limits^\frac{\pi}{2}_0{x\;sinx}\;dx=1

Step-by-step explanation:

I have applied bernoulli's formula to evaluate this integral

\textbf{Bernoulli's formula:}

\boxed{\bf\int{u}\;dv=u\;v-u'\;v_1}

Let\;\;I=\int\limits^\frac{\pi}{2}_0{x\;sinx}\;dx

Take

u=x

u'=1

and

dv=sinx\;dx

\int{dv}=\int{sinx}\;dx

v=-cosx

v_1=-sinx

Now, Bernoulli's formula

I=[-x\;cosx+1\,sinx]\limits^\frac{\pi}{2}_0

I=[-\frac{\pi}{2}\;cos\frac{\pi}{2}+sin\frac{\pi}{2}]-[-0cos0+sin0]

I=-\frac{\pi}{4}(0)+1

\implies\bf\,I=1

Similar questions