Limit 12 th ..Maths easy ...
Answers
Solution :
Now,
Rules :
Step-by-step explanation:
Now, \displaystyle \lim_{x\to 1}\frac{1-\sqrt{x}}{1-x}
x→1
lim
1−x
1−
x
\displaystyle =\lim_{x\to 1}\frac{1-\sqrt{x}}{1^{2}-(\sqrt{x})^{2}}=
x→1
lim
1
2
−(
x
)
2
1−
x
\displaystyle =\lim_{x\to 1}\frac{1-\sqrt{x}}{(1+\sqrt{x})(1-\sqrt{x})}=
x→1
lim
(1+
x
)(1−
x
)
1−
x
\displaystyle =\lim_{x\to 1}\frac{1}{1+\sqrt{x}}=
x→1
lim
1+
x
1
=\frac{1}{1+\sqrt{1}}=
1+
1
1
=\frac{1}{1+1}=
1+1
1
=\frac{1}{2}=
2
1
\to \boxed{\displaystyle \lim_{x\to 1}\frac{1-\sqrt{x}}{1-x}=\frac{1}{2}}→
x→1
lim
1−x
1−
x
=
2
1
Rules :
\displaystyle 1.\:\lim_{x\to a}\frac{x^{n}-a^{n}}{x-a}=na^{n-1}1.
x→a
lim
x−a
x
n
−a
n
=na
n−1
\displaystyle 2.\:\lim_{x\to \infty}(1+\frac{1}{x})^{n}=e2.
x→∞
lim
(1+
x
1
)
n
=e
\displaystyle 3.\:\lim_{x\to 0}(1+x)^{\frac{1}{n}}=e3.
x→0
lim
(1+x)
n
1
=e